Riemannian Manifold Learning for Nonlinear Dimensionality Reduction

نویسندگان

  • Tony Lin
  • Hongbin Zha
  • Sang Uk Lee
چکیده

In recent years, nonlinear dimensionality reduction (NLDR) techniques have attracted much attention in visual perception and many other areas of science. We propose an efficient algorithm called Riemannian manifold learning (RML). A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RNC). Experimental results demonstrate that our algorithm can learn the data’s intrinsic geometric structure, yielding uniformly distributed and well organized low-dimensional embedding data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric Learning on Manifolds

In recent years, manifold learning has become increasingly popular as a tool for performing nonlinear dimensionality reduction. This has led to the development of numerous algorithms of varying degrees of complexity that aim to recover manifold geometry using either local or global features of the data. Building on the Laplacian Eigenmap framework, we propose a new paradigm that offers a guaran...

متن کامل

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. Œe result is a practical scalable algorithm that applies to real world data. Œe UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of...

متن کامل

Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective

This paper proposes a generalized framework with joint normalization which learns lower-dimensional subspaces with maximum discriminative power by making use of the Riemannian geometry. In particular, we model the similarity/dissimilarity between subspaces using various metrics defined on Grassmannian and formulate dimensionality reduction as a non-linear constraint optimization problem conside...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Tangent Space Estimation for Smooth Embeddings of Riemannian Manifolds

Numerous dimensionality reduction problems in data analysis involve the recovery of lowdimensional models or the learning of manifolds underlying sets of data. Many manifold learning methods require the estimation of the tangent space of the manifold at a point from locally available data samples. Local sampling conditions such as (i) the size of the neighborhood (sampling width) and (ii) the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006